Transplants of cells genetically modified to express neurotrophin-3 rescue axotomized Clarke's nucleus neurons after spinal cord hemisection in adult rats.

نویسندگان

  • B T Himes
  • Y Liu
  • J M Solowska
  • E Y Snyder
  • I Fischer
  • A Tessler
چکیده

To test the idea that genetically engineered cells can rescue axotomized neurons, we transplanted fibroblasts and immortalized neural stem cells (NSCs) modified to express neurotrophic factors into the injured spinal cord. The neurotrophin-3 (NT-3) or nerve growth factor (NGF) transgene was introduced into these cells using recombinant retroviral vectors containing an internal ribosome entry site (IRES) sequence and the beta-galactosidase or alkaline phosphatase reporter gene. Bioassay confirmed biological activity of the secreted neurotrophic factors. Clarke's nucleus (CN) axons, which project to the rostral spinal cord and cerebellum, were cut unilaterally in adult rats by T8 hemisection. Rats received transplants of fibroblasts or NSCs genetically modified to express NT-3 or NGF and a reporter gene, only a reporter gene, or no transplant. Two months postoperatively, grafted cells survived at the hemisection site. Grafted fibroblasts and NSCs expressed a reporter gene and immunoreactivity for the NGF or NT-3 transgene. Rats receiving no transplant or a transplant expressing only a reporter gene showed a 30% loss of CN neurons in the L1 segment on the lesioned side. NGF-expressing transplants produced partial rescue compared with hemisection alone. There was no significant neuron loss in rats receiving grafts of either fibroblasts or NSCs engineered to express NT-3. We postulate that NT-3 mediates survival of CN neurons through interaction with trkC receptors, which are expressed on CN neurons. These results support the idea that NT-3 contributes to long-term survival of axotomized CN neurons and show that genetically modified cells rescue axotomized neurons as efficiently as fetal CNS transplants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grafts of BDNF-producing fibroblasts rescue axotomized rubrospinal neurons and prevent their atrophy.

We have reported that intraspinal transplants of fibroblasts genetically modified to express brain-derived neurotrophic factor (BDNF) promote rubrospinal axon regeneration and functional recovery following subtotal cervical hemisection that completely ablated the rubrospinal tract. In the present study we examined whether these transplants could prevent cell loss and/or atrophy of axotomized Re...

متن کامل

Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration.

Ex vivo gene therapy, utilizing modified fibroblasts that deliver BDNF or NT-3 to the acutely injured spinal cord, has been shown to elicit regeneration and recovery of function in the adult rat. Delayed grafting into the injured spinal cord is of great clinical interest as a model for treatment of chronic injury but may pose additional obstacles that are not present after acute injury, such as...

متن کامل

NMDA receptor blockade rescues Clarke's and red nucleus neurons after spinal hemisection.

Hemisection of the adult rat spinal cord at T9 transects the ascending ipsilateral axons of Clarke's nucleus (CN) neurons and the descending contralateral axons of red nucleus (RN) neurons. Eight weeks following axotomy, 30% of CN neurons and 22% of RN neurons die. Since both nuclei receive glutamatergic input, we wished to examine the possibility that glutamatergic excitotoxicity contributes t...

متن کامل

Transplants of fibroblasts genetically modified to express BDNF promote axonal regeneration from supraspinal neurons following chronic spinal cord injury.

Transplants of fibroblasts genetically modified to express BDNF (Fb/BDNF) have been shown to promote regeneration of rubrospinal axons and recovery of forelimb function when placed acutely into the injured cervical spinal cord of adult rats. Here we investigated whether Fb/BDNF cells could stimulate supraspinal axon regeneration and recovery after chronic (4 week) injury. Adult female Sprague-D...

متن کامل

Transplantation of genetically modified cells contributes to repair and recovery from spinal injury.

The effects of transplantation of fibroblasts genetically modified to produce brain derived neurotrophin factor (Fb/BDNF) on rescue of axotomized neurons, axonal growth and recovery of function was tested in a lateral funiculus lesion model in adult rats. Operated control animals included those in which the lesion was filled with gelfoam implant (Hx) and those in which the cavity was filled wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuroscience research

دوره 65 6  شماره 

صفحات  -

تاریخ انتشار 2001